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Abstract

We have performed a search for scalar top quark (stop) pair production in the inclusive electron-muon-

missing transverse energy �nal state, using a sample of p�p events corresponding to 108:3 pb�1 of data

collected with the D� detector at Fermilab. The search is done in the framework of the minimal

supersymmetric standard model assuming that the sneutrino is the lightest supersymmetric particle.

For the dominant decays of the lightest stop, ~t! b~�+1 and ~t! b`~�, no evidence for signal is found.

We derive cross-section limits as a function of stop (~t), chargino (~�+1 ), and sneutrino (~�) masses.
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Supersymmetry (SUSY) [1] provides a theoretically
attractive and coherent picture of the microscopic world
that retains the standard model's successful description
of the observed elementary particles and their interac-
tions. A major consequence of the realization of SUSY
in nature would be the existence of additional particles
(sparticles), with quantum numbers identical to those of
the elementary particles of the standard model (SM), but
with spins di�ering by a half unit. From experimental
evidence, the sparticle masses also di�er from those of
their SM partners, i.e., SUSY is a broken symmetry, and
it is expected that the mass spectrum of the sparticles
has a di�erent pattern than that of the SM. In particu-
lar, in several SUSY models, the large mass of the top
quark (mt) induces a strong mixing between the super-
symmetric partners of the two chirality states of the top
quark leading naturally to two physical states, ~t1 and
~t2, of very di�erent mass [2]. The lightest stop quark ~t1
(called ~t in this Letter) could therefore be signi�cantly
lighter than the other squarks rendering it a particularly
auspicious choice for a direct search.

The production of a pair of stop quarks (~t�~t) at the
Tevatron can proceed through gluon fusion or quark anni-
hilation. The cross section for such a process depends
to a large extent only on the stop mass m~t, and is
known at next-to-leading order (NLO) with a precision
of �8% [3]. The phenomenology of stop decays depends
on the assumptions of the SUSY model, and this analysis
is done in the minimal supersymmetric standard model
(MSSM) [4] framework with R-parity [5] conservation,
implying that the lightest SUSY particle (LSP) is sta-
ble. Searches for stop production have already been per-
formed at the Tevatron assuming that the lightest neu-
tralino (~�01) is the LSP [6].
In this Letter we also search for light stop (m~t < mt)

production, but assume that the sneutrino (~�) is the LSP.
Stop searches have been performed under these assump-
tions at LEP 2 [7] and by the CDF collaboration at the

Tevatron [8] yielding a mass limit m~t
>
� 123 GeV for

the lowest allowed sneutrino mass, m~� � 45 GeV, as
determined at LEP 1 [9]. Although these analyses are
interpreted in the framework of the MSSM, the results
are largely model independent, depending mainly on the
masses of the stop and its decay products.
In the stop mass range probed by the Tevatron, either

the 2-body decay via a chargino, ~t! b~�+1 , is kinemat-
ically allowed and thereby dominant, or the chargino
mediating the decay is virtual and the dominant decay
mode is ~t! b`~�. The three other 3-body decays medi-
ated by a chargino, ~t ! b� ~̀+ (! b�`+ ~�01), ~t ! bW ~�01
and ~t ! bH+ ~�01, with subsequent decays ~�01! ~��, are
disfavored [10]. In this Letter, the chargino is taken
either as virtual with a propagator mass of 140 GeV, or
its mass is varied between its lowest experimental limit
(� 103 GeV [11]) and the maximum value allowed by
kinematics. The masses of the sneutrinos of all three
avors are taken to be equal, except when the channel

~t! b� ~�� is assumed to be dominant.
The experimental signature for decays of a ~t�~t pair con-

sists of two b quarks, two leptons, and missing transverse
energy (ET= ). The variable ET= represents the measured
imbalance in transverse energy due to the two escaping
sneutrinos. The leptons can be e; � or � , but � leptons
are considered only if they decay into e��� or ����. We
place no requirements on the presence of jets and use
only the e�ET= signature since it has less background
than the eeET= or ��ET= channels. The resulting event
sample corresponds to 108:3 pb�1 of data collected by
the D� experiment at Fermilab during the Run I of the
Tevatron.
A detailed description of the D� detector and its trig-

gering system can be found in Ref. [12]. The data and
pre-selection criteria are identical to those used in the
published t�t cross section analysis for the dilepton chan-
nel [13], which includes the selection of events contain-
ing one or more isolated electrons with Ee

T > 15 GeV,
one or more isolated muons with E�

T > 15 GeV, and
ET= > 20 GeV. ET= is obtained from the vector sum of
the transverse energy measured in the calorimeter and in
the muon spectrometer system. Electrons are required
to have j�detj < 1:1, or 1:5 < j�detj < 2:5, where �det is
the pseudorapidity (�) de�ned with respect to the center
of the detector. Muons must satisfy j�detj < 1:7.
The dominant SM processes that provide the e�ET= sig-

nature are, in order of decreasing importance: i) multi-
jet processes (called \QCD" in the following) with one jet
misidenti�ed as an electron and one true muon originat-
ing from another jet (muon misidenti�cation has negligi-
ble e�ects on our �nal state); ii) Z ! �+��! e�������;
iii) WW! e����; iv) t�t! e����jj; and v) Drell-Yan
(DY ) ! �+��! e�������. The QCD background was
determined from data, following the procedure described
in Ref. [14]. The other backgrounds were simulated and
reconstructed using the full D� analysis chain.
Simulation of the signal is based on Pythia [15],

using the CTEQ3M [16] parton distribution functions
(PDFs), and the standard hadronization and fragmen-
tation functions in Pythia. Comphep [17] is used to
generate the 2 and 3-body decays of the stop. Detec-
tor simulation is performed using the fast D� simula-
tion/reconstruction program, which has been checked
extensively on a reference sample passed through the

full D� analysis chain. The ~t�~t samples were simulated
for stop (sneutrino, chargino) masses varying between
50 (30; 100) and 150 (90; 170) GeV.
Distributions in the kinematic quantities (Ee

T ; E
�
T , ET= )

are shown in Fig. 1(a{c). Also shown (d) are the distri-
butions for the transverse energy of any associated jets,
de�ned by a cone algorithm and having Ejet

T > 15 GeV,
and two additional kinematic quantities in which the
signal and background display a di�erent response: (e)
�e�

' � j'e � '�j, where '` is the azimuthal angle of the
lepton `, and (f) �e�

� � j�e + ��j. Based on simulation
studies, two additional criteria, 15� < �e�

' < 165� and
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FIG. 1. Distributions after pre-selection for the total back-
ground (open histogram), the sum of the total background
and the expected stop signal for m~t (m~�) = 120 (60) GeV
(shaded histogram) and the data (points) of (a) the transverse
energy of the electron, (b) the transverse energy of the muon,
(c) the missing transverse energy, (d) the transverse energy
of the jets, (e) the di�erence in azimuthal angle between the
two leptons, and (f) the absolute value of the sum in � of the
two leptons.

�e�
� < 2:0, were applied to improve the signal to back-

ground ratio in the �nal sample.
The expected cross sections for the background pro-

cesses, the normalized numbers of events passing the pre-
selection and those passing the �nal selection are given
in Table I, and compared to the expected stop signal for
m~t (m~�) = 120 (60) GeV. The e�ciency for selecting the
signal varies typically between 1% and 4%. The most
signi�cant sources of uncertainties on the signal are the
trigger and lepton identi�cation e�ciencies (� 12%), the
stop pair production cross section (8%), the uncertainty
due to the PDFs (5%) [18], the e�ect of the analysis cri-
teria (6%) and the luminosity (5:3%), which combine to
approximately 18%. This uncertainty also includes the
e�ect of the variation of the SUSY parameters �susy (the
higgs-higgsino mass parameter) and m~�

+

1

[19]. The sys-

tematic error for the background is about 10%. This
error is dominated by the uncertainty on the QCD back-
ground (7%) and on the cross sections for the background
processes (10{17%).
The agreement between the number of observed events

and the expected background leads us to set cross-section
limits on stop quark pair production. The 95% con�-
dence level (C.L.) limits are obtained using a Bayesian
approach [20] that takes statistical and systematic uncer-

Process Cross section Events after Events after
(pb) pre-selection �nal selection

\QCD" � 15:1 � 1:3 6:7� 0:5
Z! �+�� 1:70 5:3 � 1:0 1:4� 0:3
WW 0:69 4:4 � 0:7 3:3� 0:3
t�t 0:40 2:7 � 0:5 2:2� 0:4
DY! �+�� 0:35 0:18 � 0:04 0:04 � 0:02

Total backg. � 27:8 � 2:7 13:7 � 1:5

Data � 24 10
~t�~t 4:51 17:3 � 3:1 13:2 � 2:3

TABLE I. Cross sections for the background processes,
the expected numbers of simulated events passing the
pre-selection and the �nal analysis criteria, numbers of events
selected in the e�ET= data sample and the expected stop signal
assuming m~t (m~�) = 120 (60) GeV.

tainties into account. Assuming that the stop decays via
a virtual chargino and m~� = 50 GeV, any stop mass
between 73 and 143 GeV is excluded. The CDF collabo-
ration has also performed a search in the ~t! b`~� chan-
nel [8], but based on a di�erent signature: large missing
transverse energy, at least one lepton, one jet identi�ed
as a b jet, and at least another jet. The CDF and D�
results are compared in Fig. 2.
In the MSSM, when the ratio of the two vacuum expec-

tation values of the Higgs �elds is large (tan�>�10),
the ~�� can be substantially lighter than the ~�e or the
~��, leading to an enhancement of the decay width for
~t! b� ~�� [10,21]. In this case, the absence of signal pro-
vides a limit on the cross section in this decay channel,
as shown in Fig. 2 for m~�� = 50 GeV.

Again assuming lepton universality, more ~t�~t production
limits are shown in Fig. 3 for di�erent m~� values. For a
�xed value ofm~t, the cross-section limit becomes stronger
with decreasing sneutrino mass, although the di�erence
between limits obtained for di�erent m~� decreases for
high m~t. For m~� up to 85 GeV, and for certain values of
m~t, these are below the expected MSSM cross sections.
The resulting exclusion contour in the (m~t,m~�) plane

is displayed in Fig. 4, and compared to those obtained by
CDF [8], LEP 1, and most recently at LEP 2 [22]. The
present analysis places limits at signi�cantly higher m~t

compared to these results. This is mainly because of the
higher center of mass energy of the Tevatron compared to
LEP, and of the choice of a more sensitive signature com-
pared to CDF. For m~� = 45 GeV, the excluded region
extends up to a scalar top mass of 144 GeV, to be com-
pared to approximately 123 (98) GeV for CDF (LEP 2).
The 2-body decay into a b quark and a real chargino,

~t! b~�+1 , was simulated for m~�
+

1

between 100 and

140 GeV, and the ~�+1 was assumed to decay only into
`~�, leading to the same �nal state as ~t! b`~�. Figure 5
shows exclusion contours as a function of m~t and m~�

+

1

,
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as a function of m~t, for m~� = 60; 70; 80 and 90 GeV. These
limits are compared to the expected NLO cross section for
three di�erent choices of factorization scale �.
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(CDF), and at LEP 2. Also shown is the sneutrino mass limit
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75 GeV. These results are compared to the exclusion limit
obtained at LEP 2.

6



assuming m~� = 45; 60 or 75 GeV. They are compared to
the exclusion limit obtained at LEP 2 assuming uni�ca-
tion of the gaugino masses and decay of the chargino via
a W � [11].
In conclusion, our analysis that assumes the ~� to be

the LSP places new limits on the stop mass. Assuming
lepton universality and a virtual intermediary chargino,
the excluded region at 95% C.L. extends up to a scalar
top mass of 144 (130) GeV for m~� = 45 (85) GeV.
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